Fitossociologia, florística e comparação da riqueza e diversidade da vegetação arbórea entre um cerrado típico, campo limpo e mata ciliar próxima ao Rio Noidori e Rio das Mortes-MT.

Alunos: Claudinei, Jéssica Fenker Antunes, Lorrainy Bartasson, Luiz Henrique Argolo Camilo, Mariana Caixeta Milhome Viana.

Monitores: Edmar Almeida de Oliveira e Divino Vicente Silverio

introdução

O Cerrado é a savana mais diversa do mundo, sendo o segundo maior bioma do Brasil, menor apenas que a Amazônia (Klink e Machado, 2005). É conhecido pela sua alta heterogeneidade ambiental, com fisionomias abertas como campos, incluindo também matas secas e matas ciliares, influenciados tanto pelo clima, como também por fatores edáficos, topografia, fogo e pelos fatores antrópicos (Ribeiro e Walter, 2001).

A vegetação do Cerrado engloba formações florestais com predominância de espécies arbóreas e associadas aos cursos de água. A mata ciliar geralmente vem de uma transição onde nem sempre é evidente outras fisionomias florestais como Matas Secas e Cerradão (Ribeiro e Walter, 2008). O cerrado sensu stricto ocupa 70% do bioma e pode ser caracterizado pela presença de extratos arbóreos e herbáceos (Felfili e Felfili, 2001). O cerrado típico, subtipo do cerrado sensu stricto, tem vegetação predominante arbóreo-arbustivos e é uma forma intermediaria de cerrado denso e ralo (Ribeiro e Walter, 2008). Estudos como o de Sanchez et al. (1999) demonstram que áreas de matas ciliares são muito diversas em relação a composição e estrutura fitossociológica em resposta a diversas condições ambientais e ao posicionamento dessas áreas na encosta.

Os levantamentos florísticos (estudos iniciais para o conhecimento da flora de uma determinada área), e os levantamentos fitossociológicos (informações quantitativas) são utilizados para a compreensão dos padrões biogeográficos de Cerrado e vem contribuindo para a obtenção de informações sobre estruturas de comunidades em uma determinada área, além de ligações entre espécies ou grupos dessas espécies (Barbosa, 2006; Silva, 2007).

Nesse sentido, tais levantamentos geram oportunidades para desenvolver estudos comparativos entre florestas e cerrado típico (Hoffmann, 2005), porém se sabe pouco a respeito da sua composição florística e estrutura da vegetação

O objetivo deste trabalho foi verificar se existem diferenças entre a riqueza, diversidade e estrutura da vegetação de lenhosas da mata ciliar, do campo limpo e do cerrado típico da fazenda Remanso, a beira do rio Noidore e das Mortes.

MATERIAL E MÉTODOS

Área de estudo

A coleta de dados foi realizada na Fazenda Remanso, as margens do Rio Noidori. Esta área apresenta as fitofisionomias de Cerrado típico, campo limpo e mata ciliar. O clima da região é do tipo Aw (tropical de savana) de Köppen, com precipitação média anual de 1.600mm, caracterizado por duas estações bem definidas, uma seca (de abril a setembro) e uma chuvosa (de outubro a março) e temperaturas médias em torno de 24°C a 25°C (SILVA *et al.*, 2008).

Coleta de Dados

Para amostragem da vegetação foram delimitadas 18 parcelas circulares na mata ciliar, 22 no cerrado e 17 no campo com 6m de raio cada, (0.2 ha, 0.25 e 0.19 ha respectivamente). Os indivíduos arbóreos e lianas com DAP_{130cm} (diâmetros a altura do peito) ≥ 5 cm. foram identificados e tiveram diâmetros e alturas medidos. Para os

indivíduos que apresentaram ramificações e que em pelo menos um dos ramos apresentou o DAP mínimo, todos os ramos foram medidos e foi calculado o diâmetro quadrático conforme sugerido por Scolforo (1993).

A classificação das espécies e famílias seguiu o sistema APG II (2003) e os nomes científicos foram conferidos através de consulta ao MOBOT (2010).

Análise dos dados

Para a diversidade de espécies utilizou-se o índice de diversidade de Shannon-Wiener (H'), e foi utilizado o *t* de Hutcheson para comparar a diversidade entre as fitofisionomias (ZAR, 1999). A equabilidade foi determinada através do índice de Pielou (J), que varia de 0 a 1 e o valor máximo representa a situação em que todas as espécies possuem a mesma abundância. (DURIGAN, 2003).

Para avaliar a similaridade florística entre as fitofisionomias foram utilizados os índices de similaridade de SØrensen e Jaccard. Para o cálculo dos parâmetros fitossociológicos foi utilizado o programa FITOPAC (SHEPHERD, 1994) de acordo com Curtis e McIntosh (1950, 1951) e Müeller-Dombois e Ellemberg (1974).

A riqueza de espécies nas duas fitofisionomias, foi analisada aplicando o método de curva de rarefação de espécies (MAGURRAN, 1998),com o programa EstimateS 8.2 (COLWELL, 2009), 1

Resultados e Discussão

Florística

No estudo, foram encontrados 46 indivíduos, 16 espécies e 13 famílias no campo; 589 indivíduos, 77 espécies e 36 famílias no Cerrado, e 291 indivíduos, 65 espécies e 33 famílias na mata, totalizando 926 indivíduos, 126 espécies e 48 famílias. A lista de espécies e famílias se encontra na tabela 1 nos anexos.

Similaridade

A similaridade florística, usando o índice de Sørensen (CCs) retornou um índice de 0.17 para a similaridade entre campo e cerrado, de 0.09 para similaridade entre campo e mata; e de 0.23 para cerrado e mata. Com esses valores é possível identificar que a maior similaridade entre as três diferentes áreas é encontrada entre cerrado e mata. No entanto, ainda são baixos valores de similaridade, o que reflete baixa repetição de espécies entre áreas e ocorrências dependentes das características específicas do local e do esforço amostral designado a cada área.

Diversidade

O valor do índice de diversidade de espécies de Shannon-Wiener (H') calculado para a mata foi de 3.676; para o campo foi de 2.397; e para o cerrado foi de 3.693. O Índice de Shannon-Wiener é um índice que prevê a dificuldade em prever qual a espécie do próximo indivíduo coletado, ou seja, indica quão ordenado ou desordenado é um sistema. Assim, um alto índice de Shannon Wiener informa uma relativa alta diversidade de uma área quando este número é alto. Os resultados apontados indicam alto número de espécies nas áreas amostradas e alta abundância das mesmas, sendo um padrão esperado para as fitofisionomias de cerrado.

Os valores de equabilidade (J') apresentados para áreas estudadas foram de 0.850 para o cerrado, de 0.864 para o campo e de 0.881 para a mata, mostrando que a uniformidade foi semelhante para as duas áreas, apresentando pouca diferença entre a abundância das espécies encontradas entre as áreas de estudo. O elevado valor de equabilidade indica que mesmo possuindo uma flora rica em espécies, não há o predomínio de uma espécie ou de um grupo de espécies na comunidade, indicando uma baixa dominância ecológica.

Curvas de abundância

A curva de abundância de indivíduos encontrados para a área de cerrado foi de 77 espécies em 0,249 ha; no campo, foi de 16 espécies para 0,192 ha; e na mata, foi de 65 espécies em 0.203 ha (Figuras 1, 2 e 3 nos anexos).

De acordo com os índices de equabilidade, não é esperado ter espécies com alta abundância nas áreas amostradas. Porém, é possível verificar pelos gráficos de abundâncias que existem espécies discrepantes nas amostras. O índice de equabilidade considera todas as espécies das amostras, portanto, as espécies de alta abundância são consideradas simultaneamente ás espécies de baixa abundância, elevando o índice de equabilidade e ponderando a alta abundância de algumas espécies.

Fitossociologia

No cerrado, as espécies mais representativas em IVI foram *Qualia parviflora* (28.37) e *Davilla elíptica* (20.47); no campo, foram *Qualia parviflora* (50.11) e *Byrsonima pachyphylla* (31.40); e na mata, *Attalea brasiliensis* (23.46) e *Protium heptaphyllum* (21.95).

Curvas de rarefação

Conclui-se pela curva de rarefação um baixo esforço amostral às fitofisionomias da mata ciliar e do campo, mas um esforço amostral suficiente para representação das espécies presentes na fitofisionomia do cerrado, pois a curva de rarefação atinge a estabilidade. As curvas de rarefação de cerrado e mata apresentam índices de riqueza estimadas semelhantes, mesmo o conjunto de espécies sendo diferentes (Figura 4).

REFERÊNCIAS

APG II- Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG II. **BotanicalJournaloftheLinneanSociety**, 141(4): 399-436.

BARBOSA, M. 2006. Florística e Fitossociologia de Cerrado sentido restrito no Parque Estadual da Serra Azul, Barra do GarÁas, MT.

COLWELL, R.K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. (http://www.purl.oclc.org/estimates). Acessado em 12/08/2010.

CURTIS, J.T.; McINTOSH, R.P. 1950. The interrelations of certain analytic and synthetic phytosociological characters. **Ecology**, 31(3): 434-455.

CURTIS, J.T.; McINTOSH, R.P. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. **Ecology**, 32(3): 476-946.

DURIGAN, G. 2003. Métodos para análise de vegetação arbórea. *In*Cullen-Júnior, L.; Rudran, R. Valladares-Pádua, C. (ORGS.). **Métodos de estudos em biologia da conservação e manejo da vida silvestre**. Curitiba: UFPR, p. 455- 479.

FELFILI, M.C.; FELFILI, J.M., 2001.Diversidade alfa e beta no cerrado *sensu stricto* da Chapada Pratinha, Brasil. **Acta BotanicaBrasilica**, v.15, n.2, p.243-254.

HOFFMAN, W. A. 2005. Ecologia Comparativa de Espécies lenhosas do Cerrado e de Mata. In: Ministério do Meio Ambiente (Ed.). **Cerrado: Ecologia, Biodiversidade e Conservação**. Brasília: Ministério do Meio Ambiente.

KLINK, C. A.; MACHADO, R. B. 2005. A conservação do Cerrado brasileiro. **Megadiversidade**, 1 (1): 147 - 155.

MAGURRAN, A.E. 1988. **Ecological diversity and its measurement**.Princeton.Princeton University Press.

MOBOT-**Missouri Botanical Garden**.2010. W3 Trópicos. (http://www.mobot.org/w3t/search/vast.htm). Acessadoem: 13/08/2010

MÜLLER-DOMBOIS, D.; ELLEMBERG, H. 1974. Aims and methods of vegetation ecology. J. Wiley & Sons, New York.

RIBEIRO, J.; WALTER, B. 2001. As matas de galeria no contexto do bioma Cerrado. Cerrado: Caracterização e Recuperação de Matas de Galeria[S.I.], p. 29-47.

RIBEIRO, J.; WALTER, B. 2008. As Principais Fitofisionomias do Bioma Cerrado. **Cerrado: ecologia e flora**[S.I.], v. 2, p. 151-212.

SANCHEZ, M.; PEDRONI, F.; LEITÃO-FILHO, H.F.; CESAR, OSVALDO. 1999. Composição Florística de um trecho de Floresta ripária na Mata Atlântica em Picinguaba, Ubatuba, SP. **Revista Brasileira de Botânica** [S.I.], v. 22, n. 1, p. 31-42.

SCOLFORO, J.R.S. 1993. **Measurement Forestry 5: Forest growth 1**. ESAL/FAEPE, Lavras.

SHEPHERD, G. J. 1995. **FITOPAC 1. Manual do usuário**. Campinas: Departamento de Botânica. UNICAMP.

SILVA, R.D. 2007. Levantamento fitossociológico em área de cerradão no Parque do Bacaba, Nova Xavantina - MT. Trabalho de Conclusão de Curso. Nova Xavantina, Universidade do Estado de Mato Grosso.

SILVA, F.A.M.; ASSAD, E. D.; EVANGELISTA, B. A. 2008. Caracterização Climática do Bioma Cerrado. *In:*SANO, S. M.; ALMEIDA, S. P.; RIBEIRO, J. F. (Eds.) **Cerrado: Ecologia e Flora**. Brasília, DF: Embrapa Informação Tecnológica. v.1.

STATSOFT, INC. 2007. **Statistica** (data analysis software system), version 8.0 (www.statsoft.com).

ZAR, J.H. 1999. **Biostatistical Analysis**. 4 ed. Prentice-Hall, Upper Saddle River.

ANEXOS

Tabela 1 – Famílias e Espécies, incluindo lianas, amostradas em uma mata ciliar, um campo limpo e cerradão na fazenda remanso, Nova Xavantina – MT. As famílias e as espécies estão dispostas em ordem alfabética seguidas dos seus respectivos nomes populares.

<u></u>
1PO
-

COMBRETACEAE	3 7		37
Buchenavia tomentosa Eichl.	X		X
ASTERACEAE			
Eremanthus sp.	X		
CONNARACEAE			
Connarus suberosus Planch.	X	X	
DILLENIACEAE			
Davilla elliptica A. St. –Hil	X		X
Curatella Americana L.			X
EBENACEAE			
Diospyros burchellii Hiern		X	
Diospyros hispida A. DC.	X		
Diospyros sp.	X		
ERYTHROXYLACEAE			
Erythroxylum daphnites Mart.		X	
Erythroxylum suberosum A. StHil	X		
EUPHORBIACEAE			
Mabea fistulifera Benth.		X	
Mabea pohliana (Benth.) Müll. Arg.		X	
FABACEAE			
Anadenanthera colubrina (Vell.) Brenan		X	
Andira cuiabensis Benth.	X		X
Andira vermifuga Mart. ex Benth.		X	
Bauhinia aculeata L.		X	
Copaifera langsdorffii Desf.		X	
Hymenaea courbaril L.	3 7	X	
Machaerium acaciifolium Mart. ex. Benth.	X	X	
Platipodium elegans Vog.	X	X	
Peltogyne confertiflora (Mart. ex Hayne) Benth.	X X	X X	
Platymenia reticulata Benth.	X	X	
Platypodium elegans Vogel Tachigali aurea Tul.	X	Λ	
Vatairea macrocarpa (Benth.) Ducke	X	X	
_			
FLACOURTIACEAE Cassagria arborea (L. C. Pich.) Urban		\mathbf{v}	
Casearia arborea (L. C. Rich.) Urban		X	
CLUSIACEAE		**	**
Kielmeyera coriacea Mart & Zucc.	X	X	X
Kielmeyera rubriflora Cambess.	X		
HIPPOCRATEACEAE			

Salacia elliptica (Mart. ex Schult.) G. Don		X	
ICASINACEAE			
Emmotum nitens (Benth.) Miers.	X	X	
LAURACEAE			
Mezilaurus crassiramea (Meisn.) Taub. ex Mez	X		
Ocotea sp1		X	
LECYTHIDACEAE			
Eschweilera nana (O. Berg) Miers	X		
Bowdichia virgilioides Kunth	X		
Dalbergia miscolobium Benth.	X	X	
Hymenaea stigonocarpa Mart. ex. Hayne	X		
LOGANIACEAE			
Antonia ovata Pohl	X		
Strychnos pseudoquina A. St. Hil.	X		
LYTHRACEAE			
Lafoensia pacari A. StHil.	X	X	
Physocalymma scaberrimum Pohl		X	
MALPIGHIACEAE			
Byrsonima coccolobifolia H. B. & K.	X	X	
Byrsonima pachyphylla Griseb.	X		7
Heteropterys byrsonimifolia A. Juss.			Σ
MELASTOMATACEAE			
Mouriri elliptica Mart.	X		
Mouriri sp.	X		
Mouritt sp.	Α		
MENISPERMACEAE			
Abuta sp.		X	
MORACEAE			
Sorocea klotzschiana Baill.		X	
MYRCINACEAE			
Virola sebifera Aubl.		X	
MYRTACEAE			
Eugenia aurata O. Berg	X		
Eugenia gemmiflora O. Berg	X		
Myrcia amazonica DC.		X	
Myrcia camapuanensis N. Silveira	X		
Myrcia cf rostrata DC.	X		
Myrcia lanuginosa O. Berg	X		
Myrcia sellowiana O. Berg		\mathbf{X}	Σ

Myrcia sp.		X	
Myrcia sp1.	X		
Myrcia tomentosa (Aubl.) DC.	T 7	X	
Psidium sp.	X		
NYCTAGINACEAE			
Guapira SP	X		
Guapira noxia (Netto) Lundell	X		X
Guapira graciliflora (Schmidt) Lundell	X		
OCHNACEAE			
Ouratea hexasperma (St. Hil.) Baill.	X		
Ouratea spectabilis (Mart. ex Engl.) Engl. Ouratea sp.		X	
OPILIACEAE			
Agonandra brasiliensis Benth. & Hook. f.	X		
ARECACEAE			
Astrocaryum vulgare Mart.		X	
Attalea brasiliensis Glassman		X	
PROTEACAE			
Roupala montana Aubl.	X	X	
RUBIACEAE			
Alibertia edulis (Rich.) A. Rich. ex DC.		X	
Cordiera sessilis (Vell.) Kuntze		X	
Tocoyena formosa (Cham. & Schlecht.) K. Schum.		X	
SAPINDACEAE			
Dilodendron bipinnatum Radlk.		X	
Magonia pubescens A. StHil.		X	
Matayba guianensis Aubl.		X	
SAPOTACEAE			
Pouteria macrophylla (Lam.) Eyma		X	
Pouteria ramiflora (Mart.) Radlk.	X		
Pouteria sp.1		X	
Pouteria sp2		X	
SIMARUBACEAE			
Simarouba amara Aubl.		X	
TILLIACEAE			
Luehea grandiflora Mart.		X	

VOCHYSIACEAE			
Callisthene fasciculata Mart.		X	
Qualea grandiflora Mart.	X	X	
Qualea multiflora Mart.		X	
Qualea parviflora Mart.	X	X	X
Vochysia rufa Mart.	X		X

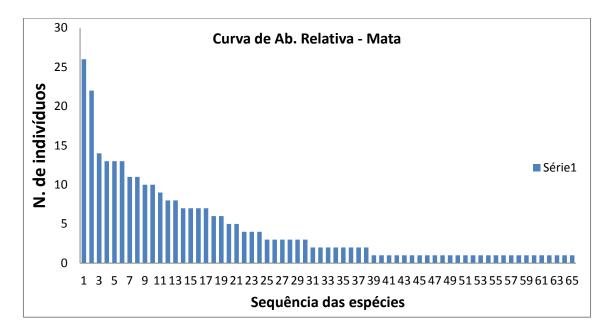


Figura 1 – Curva de abundância das espécies em uma área de mata ciliar na fazenda Remanso, Nova Xavantina-MT.

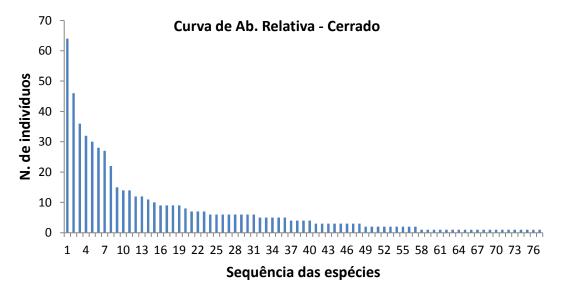


Figura 2 – Curva de abundância das espécies em uma área cerrado na fazenda Remanso, Nova Xavantina-MT.

Curva de Ab. Relativa - Campo **N. de indivíduos**2 3 2 Sequência das espécies

Figura 3 – Curva de abundância das espécies em uma área campo limpo na fazenda Remanso, Nova Xavantina-MT.

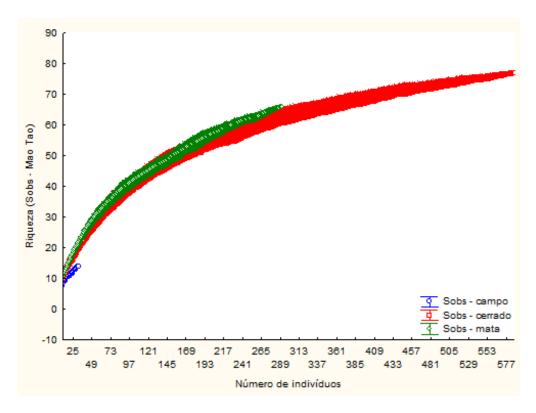


Figura 3 – Curva de rarefação des espécies em uma área mata ciliar, cerrado típico e campo limpo na fazenda Remanso, Nova Xavantina-MT.